Population health in the Anthropocene

April 1, 2014
encarnimontoya

HumanHealthMcMichael, AJ. 2014. Population health in the Anthropocene: Gains, losses and emerging trends. The Anthropocene Review, vol. 1, 1: pp. 44-56.

Last week we changed our regular lab meeting, when we all normally discuss a particular paper, to each presenting a general view on the articles published in the first issue of the new journal The Anthopocene Review (SAGE publication). In this lab meeting each member presented and lead discussion of issues within a different paper.

In my case, I had a very interesting paper by Anthony J McMichael about changes in life expectancy (Human population health) related to the human impact caused at global scale during the Anthropocene (defined in the paper as the last 200 yr). Here is a brief summary of the main topics discussed in the paper:

The paper deals with life expectancy trends during the human history on Earth, understood not as the individual health care but as a population or community collective (the “herd” effect), being this two independent topics.

The first section is a nice trip for human evolution and its relationship with the environment, distinguishing three different phases of environment-climate-human relationship:

  1. The Pleistocene (c. 2.6 million – 11,000 years ago): characterised by environment-driven changes;
  2. The Holocene (c. 11,000 – 200 years ago): with cultural-driven changes promoted by the potential of farming. Survival, although relying in culture changes, was still dependent on climatic stability (survival changes caused or amplified by adverse conditions); and
  3. The Anthropocene (last 200 year, as defined in this paper): when humans have become a dominant force on the world stage, being nowadays the major contributor to climatic change.

Then, in the second part of the paper, McMichael explains through several examples how the longer (time) and larger (spatial) consequences of current anthropogenic climatic change are crucial for human survival. The discussion is driven through a wide range of topics, such as the epidemiological transition (or), the environmentalist’s paradox (or), the distributive justice (or), urban sustainability and ecological footprint, or the coming famine.

Finally, the author shows several direct and indirect pathways by which changes in climatic conditions will affect the human health, encouraging the urgent need of an environmentally sustainable way of living.

If you are interested to find out what your ecological footprint might be try these online tests:

Miller PhD thesis 2014

March 26, 2014
lottiemiller

Miller, C.S. (2014) 520,000 years of environmental change in West Africa. PhD Thesis, Department of Environment, Earth & Ecosystems, The Open University.

Lottie 2014

CSM (2014)

Abstract:

Global temperatures are predicted to rise by 2–2.5°C by 2065, profoundly affecting the Earth’s environment. The response of ecosystems to past climate fluctuations can inform on how systems will respond in the future. This thesis focuses on Quaternary environmental changes in West Africa, a region important because of its high ecological value and role in the global carbon cycle.

In 2004, the International Continental Drilling Program recovered c. 291m of sediments spanning the last c. 1 Myr from Lake Bosumtwi (Ghana). Pollen, charcoal and nitrogen isotopes (d15N) were analysed from the most recent c. 150m (c. 520 kyr). The latitudinal position and long duration of this core makes it unique for understanding West African monsoon dynamics and vegetation change.

To aid characterisation of the Bosumtwi pollen succession, an atlas of present-day pollen was constructed for 364 pollen and spore taxa.

The pollen record from Bosumtwi reveals dynamic vegetation change over the last c. 520 kyr, characterized by eleven biome shifts between savannah and forest. Savannah vegetation is dominated by Poaceae (>55%) associated with Cyperaceae, Chenopodiaceae-Amaranthaceae and Caryophyllaceae. Forest vegetation is palynologically diverse, but broadly characterised by Moraceae, Celtis, Uapaca, Macaranga and Trema. Low d15N values correspond to forest expansion and these are driven by high lake levels. The timescale indicates that the six periods of forest expansion correspond to global interglacial periods. The record indicates that the wettest climate occurred during the Holocene, and the driest during Marine Isotope Stage 7.

The vegetation and d15N records show a strong response to glacial-interglacial variability between c. 520–320 kyr and 130–0 kyr. Between c. 320–130 kyr there is a weaker response to glacial-interglacial cycles probably related to high eccentricity during the peak of the 400-kyr component of eccentricity, with high eccentricity resulting in greater seasonality and ultimately drier conditions.

Supervisors: Dr. William Gosling, Dr. Angela Coe (both The Open University) and Dr. Tim Shanahan (University of Texas at Austin)

Examined by: Prof. Henry Lamb (University of Aberystwyth) and Dr. Pallavi Anand (The Open University).

To borrow a copy from The Open University Library click here.

Continue Reading

Environmental change in the humid tropics and monsoonal regions

January 27, 2012
WDG

JUST PUBLISHED
Bush, M.B. & Gosling, W.D. (2012) Environmental change in the humid tropics and monsoonal regions. The SAGE handbook of environmental change: Volume 2. Human Impacts and Response (ed. by J.A. Matthews, P.J. Bartlein, K.R. Briffa, A.G. Dawson, A. De Vernal, T. Denham, S.C. Fritz and F. Oldfield), pp. 113-140. SAGE, London. ISBN: 978-0-857-02360-5

Continue Reading

Blog at WordPress.com.