Chemotaxonomy of domesticated grasses: a pathway to understanding the origins of agriculture

June 7, 2019
WDG

Open access:

Jardine, P.E., Gosling, W.D., Lomax, B.H., Julier, A.C.M. & Fraser, W.T. (2019) Chemotaxonomy of domesticated grasses: a pathway to understanding the origins of agriculture. Journal of Micropalaeontology 38, 83-95. DOI: 10.5194/jm-38-83-2019

Pollen-vegetation richness and diversity relationships in the tropics

October 10, 2017
WDG

Online, open access:

Gosling, W.D., Julier, A.C.M., Adu-Bredu, S., Djagbletey, G.D., Fraser, W.T., Jardine, P.E., Lomax, B.H., Malhi, Y., Manu, E.A., Mayle, F.E. & Moore, S. (2017) Pollen-vegetation richness and diversity relationships in the tropics. Vegetation History and Archaeobotany. DOI: 10.1007/s00334-017-0642-y

The modern pollen-vegetation relationships of a tropical forest-savannah mosaic landscape, Ghana, West Africa

August 22, 2017
WDG

Julier, A.C.M., Jardine, P.E., Adu-Bredu, S., Coe, A.L., Duah-Gyamfi, A., Fraser, W.T., Lomax, B.H., Malhi, Y., Moore, S., Owusu-Afriyie, K. & Gosling, W.D. (2017) The modern pollen-vegetation relationships of a tropical forest-savannah mosaic landscape, Ghana, West Africa. Palynology online. DOI: 10.1080/01916122.2017.1356392

Jardine, P.E., Abernethy, F.A.J., Lomax, B.H., Gosling, W.D. & Fraser, W.T. Shedding light on sporopollenin chemistry, with reference to UV reconstructions. Review of Palaeobotany and Palynology 238: 1-6. DOI: 10.1016/j.revpalbo.2016.11.014

 

Jardine, P.E., Abernethy, F.A.J., Lomax, B.H., Gosling, W.D. & Fraser, W.T. (2017) Shedding light on sporopollenin chemistry, with reference to UV reconstructions. Review of Palaeobotany and Palynology 238, 1-6. DOI: 10.1016/j.revpalbo.2016.11.014

 

Jardine, P.E., Fraser, W.T., Lomax, B.H., Sephton, M.A., Shanahan, T.M., Miller, C.S. & Gosling, W.D. (2016) Pollen and spores as biological recorders of past ultraviolet irradiance. Scientific Reports 6, 39269. DOI: 10.1038/srep39269

Shining a light on fossil sunshine

December 15, 2016
WDG

Dr. Phil Jardine

Dr. Phil Jardine

An international team of scientists have reconstructed the longest ever record of past sunshine using pollen trapped in lake sediments collected in Ghana, Africa. The study published today in Scientific Reports enables us to understand past changes in solar input to the global system over the past 140,000 years. Previously we have had to rely upon computer models to mathematically determine past solar inputs to the Earth. “This work really is a first; being able to peer back in time to understand how the Sun has driven our global system over many of thousands of years is a very exciting prospect” said joint-lead author Dr. Phillip Jardine of The Open University.

The Sun is a key component of our natural environment, driving a multitude of processes at Earth’s surface, from photosynthesis generating energy within plants, through to global-scale circulation patterns in our oceans and atmosphere. Understanding more about how the Sun has behaved in the past, and the influence this had on Earth’s environment, will help scientists predict future climate change.

Dr. Jardine used a technique pioneered by one of his co-authors, Dr. Wesley Fraser of Oxford Brookes University, to determine past changes in solar input, specifically changes in ultraviolet (UV) radiation. Plants protect themselves from the harmful nature of ultraviolet radiation by incorporating a number of specific chemical compounds into their tissues that absorb and dissipate the energy of UV radiation. Pollen grains of flowering plants are also provided protection by these UV-absorbing chemicals, thus act as a long-term recorder of ultraviolet radiation from the Sun.

Pollen grains are readily trapped in lake sediments, where they can be preserved for millions of years. By extracting material from Lake Bosumtwi, Ghana, the pollen that was released by flowering plants thousands of years ago can be separated from the lake sediment and chemically analysed for UV-absorbing chemical compounds. It is this chemical signature within the ancient pollen grains that provides us with information about past levels of solar ultraviolet radiation.

“What we present here is a new opportunity to explore how the Earth has changed” said Dr. William Gosling (University of Amsterdam). “I am particularly excited about this because it will means that we can gain a better understanding of why vegetation changed in the past, and consequently this will allow us to anticipate better what the likely impacts of projected future climate change will be.”

This study is available now at www.nature.com/articles/srep39269

Jardine PE, Fraser WT, Lomax BH, Sephton MA, Shanahan TM, Miller CS & Gosling WD (2016) Pollen and spores as biological recorders of past ultraviolet irradiance. Scientific Reports. DOI: 10.1038/srep39269

Blog at WordPress.com.