Brown, J.H. (2014) Why are there so many species in the tropics? Journal of Biogeography 41, 8-22. DOI:  10.1111/jbi.12228

Matamoro-Vidal, A., Prieu, C., Furness, C.A., Albert, B. & Gouyon, P. (2016) Evolutionary stasis in pollen morphogenesis due to natural selection. New Phytologist 209, 376-394. DOI: 10.1111/nph.13578

McMichael, C., Piperno, D., Neves, E., Bush, M., Almeida, F. & Mongelo, G. (2015) Phytolith assemblages along a gradient of ancient human disturbance in western Amazonia. Frontiers in Ecology and Evolution 3, 141. DOI: 10.3389/fevo.2015.00141

ter Steege, H. et al. (2015) Estimating the global conservation status of more than 15,000 Amazonian tree species. Science Advances 1. DOI: 10.1126/sciadv.1500936

 

Pollen database of Early-Miocene Amazonian palynological diversity

June 29, 2015
milantvm

By Milan Teunissen van Manen
MSc Biological Sciences, University of Amsterdam.

As part of my MSc research project on Early-Miocene paleodiversity shifts due to marine incursions in the Amazon basin, I recorded and photographed large numbers of palynomorphs. The database consists of a set of images (Teunissen van Manen, 2015a) that I took with my smartphone (bundled in pdfs for sharing purposes) and an Excel overview file (Teunissen van Manen, 2015b) where each of the entries is described. Some of the entries are well documented taxa (C’mon, who hasn’t heard of Zonocostites ramonae and Mauritidites franciscoi before?) while others are “types” that are not formally described – mainly because in Amazonian sediments new, unseen palynomorphs pop up all the time. Indeed, this was the reason why I started the database in the first place: I was merely trying to keep up with the vast diversity that I encountered during sample counting.

Seeing the added value of having a digital record of the palynological diversity from the Amazon basin samples, my project supervisor, Carina Hoorn (UvA), encouraged me to publish the database online so others could also access it. I’d like to invite you to take a look. I hope it can maybe help you with identifying taxa or, who knows, linking taxa across the Amazon basin… if you do, please let me know!

…or maybe it will have you rejoice in the huge diversity and alien beauty of pollen morphology, just as it rejoiced me as I was working through my (seemingly endless) samples.

REFERENCES

Teunissen van Manen, Milan (2015a): Miocene Amazonian Palynological Diversity – Image files. figshare. http://dx.doi.org/10.6084/m9.figshare.1396453

Teunissen van Manen, Milan (2015b): Miocene Amazonian palynological diversity database – Entries record. figshare. http://dx.doi.org/10.6084/m9.figshare.1396562

This project was conducted with Research Group of Palaeoecology & Landscape Ecology, part of the Institute for Biodiversity & Ecosystem Dynamics.

Understanding pollen and spore diversity

November 2, 2012
WDG

Linnean Society Palynology Specialist Group meeting
Linnean Society of London
Burlington House
1st November 2012

Linnean Society (November 2012)

PCRG members at the Linnean Society 1st November
Left-Right: Hayley Keen, William Gosling, Alice Kennedy and Encarni Montoya

Yesterday four members of the Palaeoenvironmental Change Research Group (PCRG) visited the Linnean Society of London to attended the annual palynology meeting. The talks were excellent and covered a wide range of issues in palaynology  from the configuration of Late Triassic Cassopollis grains (Wolfram Kurschner, University of Oslo), through how pollen and spores are built (Stephen Blackmore, Royal Botanic Garderns, Edinburgh) to understanding global patterns of mass-extinctions with particular focus on the Cretaceous-Paleogene (Vivi Vajda, University of Lund). For further information on the days program click here to visit the meeting web site.

The PCRG contribution to the meeting was made by Hayley Keen who presented the first paper related to her doctoral research to an exteral audience entitled “Pollen counting for diverse tropical ecosystems”. The paper presented:  

  1. A statistical model (developed by co-author Felix Hanke) which simulaltes pollen counting in order to estimate the size of pollen count required to develop a robust ecological insight from the fossil pollen record, and
  2. compared model predictions with empirical data from a diverse tropopical ecosystem (Mera, Ecuador) to assess the reliablity of the model.

It is hoped the application of the model to fossil pollen counting will allow more efficient and effective use of palynologists time. The paper was very well recieved despite the audible intake of breath when Hayley recommened that to characterize pollen richness (diversity) in some settings pollen counts in excess of 2000 grains might be required!

PCRG October

October 31, 2012
WDG

The back end of September and October has been very busy as I have tried to catch up with the teaching, administration and research activity which somewhat accumulated whilst on field work!

Major tasks have been:
1) the marking and coordination for level 3 Geological Record of Environmental Change (S369) module examination,
2) getting used to my new role as Post Graduate Tutor looking after all things related to a doctoral students in the Department of Environment, Earth & Ecosystems, and
3) trying to find time to finish off three manuscripts for submission!

Other members of the lab have also been busy:
* Encarni has arrived from Valenti Rull‘s lab at the Botanical Institute in Barcelona as a NERC Fellow and is settling in to life in Milton Keynes, more details soon…
* Lottie is getting into data analysis and writing up of the Lake Bosumtwi pollen an N isotope data,
* Natalie is writing, crunching numbers and waiting for a machine to be fixed…
* Bryan is working on gelling biogeographic data together in GIS

Imagae of a Toarcian foraminifera taken by Alice Kennedy facilitated by the new cable which allows our microscope camera to talk to a computer – hooray!

* Hayley has been preparing for talking at the Linnean Society palynology meeting on 1st November “Understanding pollen and spore diversity”, and helping “steal” a microtome for sectoning her wood macrofossils,
* Frazer has started to plot Andean and Amazonian midge distributions against temperature, and
* Alice has been taking photos…

In the midst of all this fun I was sent this great video which brightened my day. I hope you enjoy it as well…

Number crunching in palynology

May 10, 2012
HayleyKeen

Simulated pollen counts

Simulated pollen counts

HOW DO WE UNDERSTANT PAST VEGETATION CHANGE?
Our understating of vegetation in the past, and how it has changed through time, comes mainly from the examination of macrofossils (e.g. wood and leaves) and microfossils (e.g. pollen and spores) found in the sedimentary record. The potential for microscopic fossils to provide an insight into past vegetation change on a landscape scale was pioneered by von Post (Von Post, 1916, reprinted 1967) and has been subsequently used to understand changes in regional floras (Godwin, 1956), and address conservation issues (Willis et al., 2007). Analysis of fossil pollen and spores (palynology) is now widely used on late Quaternary timescales to answer ecological questions linking vegetation and wider environmental/climatic change; these include:

  • Has there been a change in major vegetation type (biome)? For example a change between woodlands and grassland vegetation.
  • How have the ecosystem dynamics altered? For example the presence or absence of fire.
  • How has the diversity within the ecosystem changed? For example increase or decrease in sample richness.

Palynological analysis relies on obtaining a sub-sample of the pollen contained within the sediment at a specific depth (time) which allows the vegetation at that time to be reconstructed. This sub-sample is known as a pollen count. To build up a picture of vegetation change through time it is necessary to generate a sequence of pollen counts. The size of the sub-sample (pollen count) required from any particular depth (time period) is dependent on the nature of the vegetation association being investigated and the ecological question being addressed . For example, the amount of pollen analysed to determine if the vegetation was predominantly wooded or grassland is different to that required to provide information on the biological diversity within the vegetation assemblage.

Discussed below are some of the conventions related to choosing an appropriate pollen count size within palynology, with particular reference to the challenges of dealing with diverse tropical floras.

Continue Reading

Blog at WordPress.com.