Human occupation and ecosystem change on Upolu (Samoa) during the Holocene

January 21, 2020
WDG

Now online open access:

Gosling, W.D., Sear, D.A., Hassall, J.D., Langdon, P.G., Bönnen, M.N.T., Driessen, T.D., van Kemenade, Z.R., Noort, K., Leng, M.J., Croudace, I.W., Bourne, A.J. & McMichael, C.N.H. (2020) Human occupation and ecosystem change on Upolu (Samoa) during the Holocene. Journal of Biogeography DOI: 10.1111/jbi.13783

Note: Co-authors Bönnen, Driessen, van Kemenade, and Noort all contributed to this work as part of the research projects related to their MSc or BSc degrees within the Department of Ecosystem & Landscape Dynamics at the University of Amsterdam.

Indicators for assessing tropical alpine rehabilitation practices

February 8, 2019
WDG

Open access:

Duchicela, S.A., Cuesta, F., Pinto, E., Gosling, W.D. & Young, K.R. (2019) Indicators for assessing tropical alpine rehabilitation practices. Ecosphere 10, e02595. DOI: 10.1002/ecs2.2595

Loughlin PhD Thesis 2018

July 25, 2018
nicholasloughlin

Nick recovers a sediment core for his PhD project.

Nick Loughlin

Loughlin, N.J.D. (2017) Changing human impact on the montane forests of the eastern Andean flank, Ecuador. PhD Thesis. School of Environment, Earth and Ecosystem Sciences, The Open University.

Abstract:

The montane cloud forests of South America are some of the most biodiverse habitats in the world, whilst also being especially vulnerable to climate change and human disturbance.

Today much of this landscape has been transformed into a mosaic of secondary forest and agricultural fields. This thesis uses palaeoecological proxies (pollen, non-pollen palynomorphs, charcoal, organic content) to interpret ecosystem dynamics during the late Quaternary, unravelling the vegetation history of the landscape and the relationship between people and the montane cloud forest of the eastern Andean flank of Ecuador. Two new sedimentary records are examined from the montane forest adjacent to the Río Cosanga (Vinillos) and in the Quijos Valley (Huila). These sites characterise the natural dynamics of a pre-human arrival montane forest and reveal how vegetation responded during historical changes in local human populations.

Non-pollen palynomorphs (NPPs) are employed in a novel approach to analyse a forest cover gradient across these sites. The analysis identifies a distinctive NPP assemblage connected to low forest cover and increased regional burning. Investigation into the late Pleistocene Vinillos sediments show volcanic activity to be the primary landscape-scale driver of ecosystem dynamics prior to human arrival, influencing montane forest populations but having little effect on vegetation composition.

Lake sediments at Huila from the last 700 years indicate the presence of pre-Hispanic peoples, managing and cultivating an open landscape. The subsequent colonization of the region by Europeans in the late 1500’s decimated the indigenous population, leading to the abandonment of the region in conjunction with an expansion in forest cover ca. 1588 CE. After approximately 130 years of vegetation recovery, montane cloud forest reached a stage of structural maturity comparable to that seen in the pre-human arrival forest. The following 100 years (1718-1822 CE) of low human population and minimal human impact in the region is proposed as a shifted ecological baseline for future restoration and conservation goals. This ‘cultural ecological baseline’ features a landscape that retains many of the ecosystem service provided by a pristine montane forest, while retaining the cultural history of its indigenous people within the vegetation. Continue Reading

Keen PhD Thesis 2015

September 30, 2015
WDG

Hayley Keen getting excited about sediments during fieldwork in Ecuador (2012). Photo: J. Malley

Hayley Keen getting excited about sediments during fieldwork in Ecuador (2012). Photo: J. Malley

Keen, H.F. (2015) Past environmental change on the eastern Andean flank, Ecuador. PhD Thesis, Department of Environment, Earth & Ecosystems, The Open University.

Abstract
The eastern Andean flank of Ecuador (EAF) contains some of the world’s most biodiverse ecosystems. Andean montane forests are threatened due to anthropogenic pressures and both current and projected climate change. This thesis examines the palaeoecological history of two stratigraphic sequences (Mera Tigre West [MTW] and Mera Tigre East [MTE]) obtained from the Ecuadorian modern lower montane forest. The sediments preserved were analysed using eight analytical techniques, allowing an insight into the ecosystem’s potential response to projected changes derived from their past responses. Palaeoecological studies on the EAF are rare, and those that do exist are debated relating to: i) the inference of robust ecological data from pollen records in floristically diverse locations, and ii) the past source area of sediments preserved in fluvially exposed sequences, potentially leading to contamination with older material.

A statistical sub-sampling tool was developed (debate i), capable of producing statistically robust count sizes for each pollen sample; MTW and MTE count sizes ranged from 196-982 showing the diversity within sequences. The depositional environment of MTE was analysed, investigating sediment provenance throughout (debate ii). Results found that large scale volcanic events were critical in the preservation of the sediments, whereas fluvial influence caused a regional sediment source area in the upper stratigraphy, impacting on the palynological interpretation of MTE. Pollen records demonstrated the presence of a diverse vegetation community with no modern analogue at MTE (abundant taxa (>15 %): Hedyosmum, Wettinia, Ilex) and upper montane forest at MTW (Alnus, Hedyosmum, Podocarpus). Fire was not the main driver for the vegetation reassortment at either site (MTW correlation coefficient: -0.37, MTE: 0.16). The two sites have demonstrated the EAF plays host to floristically dynamic ecosystems, susceptible to drivers of change (fire and landscape) and should be considered when predicting the montane forests’ future response to environmental change.

Supervisors: Dr. William D. Gosling (The Open University/University of Amsterdam), Dr. Encarni Montoya and Dr. Sarah Sherlock (both The Open University).
Examiners: Dr. Dunia Urrego (University of Exeter), and Prof. David Gowing (The Open University).
Chair: Dr. Mark Brandon (The Open University).

To borrow a copy from The Open University Library click here.

Publications (so far): Continue Reading

Valencia PhD thesis 2014

March 5, 2015
WDG

Bryan-Kuelap-gate-2010-smallValencia Castillo, B.G. (2014) From glacial to modern conditions: Vegetation and climate change under human influence in the Central Andes. PhD Thesis, Department of Environment, Earth & Ecosystems, The Open University.

Abstract
Conservation, restoration and management strategies are employed to maintain Earth’s biological diversity and physical environment to a near “natural” state. However, the concept of “natural” is generally inexact and may include degraded landscapes. In absence of long-term empirical data of natural baselines, impacted assemblages (human altered baselines) could be falsely assumed to be natural and set as conservation or restoration goals. Therefore, the identification of long-term ecological baselines becomes a pressing requirement especially in threatened biodiversity hotspots such as the tropical Andes that were under human pressure for several millennial.

This thesis aims to identify ecological baselines for tropical Andean ecosystems based on multi-proxy palaeoecological reconstructions from three Andean lakes. Trends of vegetation change are used to identify when landscapes became anthropogenic in the Andes. Because vegetation assemblages at c. 10 ka experienced negligible anthropogenic impacts and had modern-like climate condition, this time was considered the most recent period likely to provide insight into natural ecological baseline conditions.

Changes in vegetation assemblages were evaluated over time departing from 10 ka around Miski and Huamanmarca, two sites that remained virtually impervious to human impacts. Baselines in Miski and Huamanmarca drifted continuously over time and showed that baselines are dynamic entities. The vegetation assemblages derived from Miski and Huamanmarca suggest that that human impact was not homogeneous throughout the Andean landscape.

Once baselines were defined it was possible to evaluate if the spatial distribution of Andean woodlands represented by Polylepis was a product of human impacts. A MaxEnt model generated based on 22 modern environmental variables and 13 palaeoecological vegetation reconstructions showed that Polylepis woodlands were naturally fragmented before humans arrived in South America (14 ka). However, the influence of humans during the mid and late Holocene enhanced the patchiness of the forest generating a hyper-fragmented landscape.

Supervisors: Dr. William D. Gosling , Dr. Angela L. Coe (both The Open University) and Prof. Mark B. Bush (Florida Institute of Technology).

Examined by: Dr. Robert Marchant (University of York), and Prof. David Gowing (The Open University).

To borrow a copy from The Open University Library click here.

BES Tropical Ecology Meeting

April 23, 2014
WDG

The 7th Early Career Research meeting 2014

The University of York, August 14th and 15th 2014

Tropical ecosystems – from process to policy

SIG_TropEcol_final-300x214Keynote speakers:

After six successful meetings, the legendary BES-TEG Early Career Research Meeting returns. Day one will focus on Ecology and Ecosystem Processes, while day two will focus on Practical Applications and links to Policy such as conservation, livelihood, policy and development.

All early-career researchers, both PhD and Post-Docs, are welcome to present their tropical ecology related research with a poster and/or oral presentation. There shall be a competition for both with prizes. This event will take place at Derwent College (D/L//047) and the accommodation at Alcuin College (see map link below).

Continue Reading

New job: Paleo & Landscape Ecology

February 21, 2014
WDG

IBED-UvA-logoI am delighted to announce that later this year I will be moving to the Institute of Biodiversity & Ecosystem Dynamics at the Universiteit van Amsterdam. I will be taking up an Associate Professor position as head of the Paleo & Landscape Ecology group. I am excited, and honoured, by this appointment and look forward to intergrating my ongoing program of research with the world class team in Amsterdam. Over the next few months I am sure further details will appear on the blog about the move as plans evolve towards my start date in September. Exciting times…

In the light of my departure, at that of Emma Sayer (bound for Lancaster), The Open University, Department of Environment, Earth & Ecosystems is now advertising two posts (details below). I have enjoyed my time at the OU and I think there are still good teaching and research opportunities for academics here. If anyone whats to contact me about the posts then I am happy to discuss.

Lectureship  Environmental Science (Advert)
Lectureship / Senior Lectureship in Earth or Environmental Science (Advert)

Introduction to Ecosystems MOOC

October 31, 2013
WDG

NEW from the Department of Environment, Earth & Ecosystems at The Open University a Massive Open Online Course:
EEEBanner
Introduction to Ecosystems 
Starts 18-Nov-13
Runs for 8wks and needs 3hrs per week
Completely free and needs no prior knowledge.

Course description: “Ecosystems is about the relationships between living organisms. Gain an understanding of the natural world and how the web of life works, with illustrations from around the world.”

REGISTRATION NOW OPEN
Sign up at FutureLearn

Funded PhD studentship: Tropical vegetation, environment and climate

March 21, 2013
WDG

William Gosling

William Gosling pollen trapping in west Africa. A studentship on the new grant will investigate modern pollen-vegeation relationships

Fully funded NERC PhD studentship tied to 500,000 years of solar irradiance, climate and vegetation changes project.
To start October 2013 now avaliable with the Palaeoenvironmental Change Research Group.

Title: Tropical vegetation, environment and climate: The present is the key to the past

Supervisors:
William D. Gosling (The Open University),
Wesley Fraser (Oxford Brookes University),
Barry Lomax (University of Nottingham),
Mark Sephton (Imperial College London) &
Yadvinder Malhi (University of Oxford)

  • Investigate the dynamics of modern tropical forest and savannah ecosystems
  • Training in micro fossil and organic geochemical analysis
  • Develop a comprehensive understanding of modern pollen-vegetation relationships
  • Field work in Ghana, in conjunction with Forestry Research Institute of Ghana
Making pollen traps on field work in Ghana

Making pollen traps on field work in Ghana

Understanding how vegetation responded to past climate change requires the development of well constrained relationships between living floras, environment and climate. This project will help constrain the great uncertainty which exists as to how tropical ecosystems are represented in the fossil record by examining the relationship between modern vegetation and the pollen it produces. The project will analyse modern pollen rain using a combination of traditional microscopic analysis [1] and cutting edge geochemical techniques [2]. We anticipate that the findings will provide new insight into past vegetation and climatic change.

For further information on the project and how to apply see the full advert: NERC PhD advert. Prior to applying please check eligibility for NERC funding by clicking here.

Closing date: 25th April, interviews will be held at The Open University during May.

To find out more about the department, research environment and student life at The Open Univerity visit the Department of Environment, Earth & Ecosystems, the Centre for Earth, Planetry, Space & Astronomical Research (CEPSAR) and OU RocSoc web pages.

Work as part of a larger research team in the UK and abroad.

Work as part of a larger research team in the UK and abroad.

References:

[1] Gosling, W.D., et al., Differentiation between Neotropical rainforest, dry forest, and savannah ecosystems by their modern pollen spectra and implications for the fossil pollen record. Review of Palaeobotany and Palynology, 2009. 153(1-2): p. 70-85.
[2] Lomax, B.H., et al., Plant spore walls as a record of long-term changes in Ultraviolet-B radiation. Nature Geoscience, 2008. 1(9): p. 592-596.

Blog at WordPress.com.