Four centuries of vegetation change in the mid-elevation Andean forests of Ecuador

May 29, 2019
WDG

Huisman, S.N.*, Bush, M.B. & McMichael, C.N.H. (2019) Four centuries of vegetation change in the mid-elevation Andean forests of Ecuador. Vegetation History and Archaeobotany. DOI: 10.1007/s00334-019-00715-8

* Seringe conducted the research presented in this paper during her MSc Biological Sciences at the University of Amsterdam.

Palynologische Kring: Spatial patterns in palaeoecology

March 18, 2019
WDG

Palynologische Kring: Spatial patterns in palaeoecology meeting
Date: Thursday 4 April
Location: Rijksdienst voor het Cultureel Erfgoed (RCE), Amersfoort

  • 13:30 – 14:00 Otto Brinkkemper (RCE): Spatial patterns in the Dutch archaeobotanical dataset
  • 14:00 – 14:30 Marjolein Gouw-Bouman (Utrecht University): Spatial patterns of the Dark Age reforestation

Break

  • 15:00 – 15:30 Thomas Giesecke (Utrecht University): Research and education of vegetation change in four dimensions – developments of the European Pollen Database in Neotoma
  • 15:30 – 16:00 Crystal McMichael (University of Amsterdam): Ancient human disturbances may be skewing our understanding of Amazonian ecology
Rijksdienst voor het Cultureel Erfgoed

Rijksdienst voor het Cultureel Erfgoed

:

Valencia PhD thesis 2014

March 5, 2015
WDG

Bryan-Kuelap-gate-2010-smallValencia Castillo, B.G. (2014) From glacial to modern conditions: Vegetation and climate change under human influence in the Central Andes. PhD Thesis, Department of Environment, Earth & Ecosystems, The Open University.

Abstract
Conservation, restoration and management strategies are employed to maintain Earth’s biological diversity and physical environment to a near “natural” state. However, the concept of “natural” is generally inexact and may include degraded landscapes. In absence of long-term empirical data of natural baselines, impacted assemblages (human altered baselines) could be falsely assumed to be natural and set as conservation or restoration goals. Therefore, the identification of long-term ecological baselines becomes a pressing requirement especially in threatened biodiversity hotspots such as the tropical Andes that were under human pressure for several millennial.

This thesis aims to identify ecological baselines for tropical Andean ecosystems based on multi-proxy palaeoecological reconstructions from three Andean lakes. Trends of vegetation change are used to identify when landscapes became anthropogenic in the Andes. Because vegetation assemblages at c. 10 ka experienced negligible anthropogenic impacts and had modern-like climate condition, this time was considered the most recent period likely to provide insight into natural ecological baseline conditions.

Changes in vegetation assemblages were evaluated over time departing from 10 ka around Miski and Huamanmarca, two sites that remained virtually impervious to human impacts. Baselines in Miski and Huamanmarca drifted continuously over time and showed that baselines are dynamic entities. The vegetation assemblages derived from Miski and Huamanmarca suggest that that human impact was not homogeneous throughout the Andean landscape.

Once baselines were defined it was possible to evaluate if the spatial distribution of Andean woodlands represented by Polylepis was a product of human impacts. A MaxEnt model generated based on 22 modern environmental variables and 13 palaeoecological vegetation reconstructions showed that Polylepis woodlands were naturally fragmented before humans arrived in South America (14 ka). However, the influence of humans during the mid and late Holocene enhanced the patchiness of the forest generating a hyper-fragmented landscape.

Supervisors: Dr. William D. Gosling , Dr. Angela L. Coe (both The Open University) and Prof. Mark B. Bush (Florida Institute of Technology).

Examined by: Dr. Robert Marchant (University of York), and Prof. David Gowing (The Open University).

To borrow a copy from The Open University Library click here.

Blog at WordPress.com.