Scarce fire activity in north and north-western Amazonian forests during the last 10,000 years

December 20, 2021
WDG

#Openaccess #Teameffort

Gosling WD, Maezumi SY, Heijink BM, Nascimento MN, Raczka MF, van der Sande MT, Bush MB, McMichael CNH. 2021. Scarce fire activity in north and north-western Amazonian forests during the last 10,000 years. Plant Ecology & Diversity. DOI: 10.1080/17550874.2021.2008040

Quaternary Vegetation Dynamics

November 17, 2021
WDG

Cover of "Quaternary Vegetation Dynamics: The African Pollen Database"

I am delighted to announce the publication of the new volume in the Palaeoecology of Africa series. I had the privilege to guest edit this with Anne-Marie Lézine and Louis Scott. The final version is now available OPEN ACCESS online.

Gosling, W.D., Lézine, A.-M. & Scott, L., eds. (2021) Quaternary Vegetation Dynamics: The African Pollen Database. Series editor: Runge, J. Palaeoecology of Africa: Volume 35. CRC Press. ISBN: 9780367755089 DOI: 10.1201/9781003162766

Download supporting online material here.

Mapping Ancient Africa: Paleo-ENSO

October 11, 2021
WDG

INQUAlogo

To start discussion during the Mapping Ancient Africa kick off meeting (October 2021) lead author Stefanie Kaboth-Bahr has recorded an introduction to her recent paper proposing a novel tropical based climate mechanism for driving climatic change across Africa.

Kaboth-Bahr SGosling WD, Vogelsang R, Bahr A, Scerri EML, Asrat A, Cohen AS, Düsing W, Foerster V, Lamb HF, et al. 2021. Paleo-ENSO influence on African environments and early modern humans. Proceedings of the National Academy of Sciences 118(23):e2018277118. https://doi.org/10.1073/pnas.2018277118

Identifying environmental drivers of fungal non-pollen palynomorphs in the montane forest of the eastern Andean flank, Ecuador.

October 23, 2017
WDG

Open acess, online:

Loughlin, N.J.D., Gosling, W.D. & Montoya, E. (2017) Identifying environmental drivers of fungal non-pollen palynomorphs in the montane forest of the eastern Andean flank, Ecuador. Quaternary Research. DOI: 10.1017/qua.2017.73

Gosling PhD thesis 2004

April 10, 2014
WDG

Gosling, W.D. (2004) Characterisation of Amazonian forest and savannah ecosystems by their modern pollen spectra.  PhD Thesis, Department of Geography, University of Leicester.

PhD-wdg

WDG Bolivia (2002)

Abstract:

Controversy surrounds the Quaternary palaeoenvironmental history of Amazonia. It is unclear whether moist evergreen forest, savannah or seasonally dry forest dominated the Amazon basin at the last glacial maximum (c. 21,000 years B.P.). In part the uncertainty surrounding the palaeoenvironmental history of Amazonia stems from a poor understanding of the ecological significance of the fossil pollen records from the region. In order to improve interpretations of the fossil pollen record it is essential to better understand the nature of the pollen rain produced by modern ecosystems.

In this thesis, three Neotropical ecosystems equivalent to those alluded to above were characterised by their modern pollen rain. This was achieved by examining samples collected in artificial pollen traps located within permanent (50 x 200 m) vegetation plots in the Noel Kempff Mercado National Park area, Bolivia. In each plot 10 traps were sampled for one field season (September 1998 to September 1999, or September 2000 to September 2001) and 5 traps were sampled from two additional field seasons (between 1998 and 2001). Pollen counts of at least 100 grains were made for each trap. In total 318 pollen taxa were distinguished, of which 116 were identified. The characteristic pollen from each of the three ecosystems were determined through a series of steps: spatial and temporal variations were explored using Spearman’s Rank correlations, the distinctive taxa of each ecosystem were identified using Principal Components Analyses (PCA), and the representativity of the pollen for each ecosystem was examined by comparing pollen and vegetation abundances. These analyses revealed a small number of taxa that can be used to characterize these ecosystems. Further PCA showed that it is possible to differentiate between the ecosystems by assessing the relative proportions of Didymopanax, Alchornea, Anadenanthera, Melastomataceae/Combretaceae, Moraceae/Urticaceae, Myrtaceae, Palmae, Pteropsidia (trilete), Poaceae and Solanum. These findings mean that it is now possible to detect these ecosystems in the fossil pollen record and consequently further information regarding the nature of the vegetation change in the Amazon basin can be gained.

Supervisors: Dr. Francis Mayle (University of Leicester, now at University of Reading) and Dr. Nicholas Tate (University of Leicester)

Examined by: Prof. Henry Lamb (University of Aberystwyth) and Prof. Andrew Millington (University of Leicester, now at Texas A & M), April 2004.

To borrow a copy from University of Leicester Library search for my name or thesis title here (item ID 7507349613), or download directly: Volume 1, Volume 2, and CD.

Continue Reading

Blog at WordPress.com.